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On Communication and Collusion†

By Yu Awaya and Vijay Krishna*

We study the role of communication within a cartel. Our analysis 
is carried out in Stigler’s (1964) model of repeated oligopoly with 
secret price cuts. Firms observe neither the prices nor the sales 
of their rivals. For a fixed discount factor, we identify conditions 
under which there are equilibria with “cheap talk” that result in 
near-perfect collusion, whereas all equilibria without such commu-
nication are bounded away from this outcome. In our model, commu-
nication improves monitoring and leads to higher prices and profits. 
(JEL C73, D43, D83, L12, L13, L25)

Antitrust authorities view any inter-firm communication with concern, but 
despite this, even well-established cartels meet regularly. In their landmark study 
of a sugar-refining cartel, Genesove and Mullin (2001) write that cartel members 
met weekly for almost a decade! Harrington (2006) too reports on the frequent 
meetings of cartels in many industries: Vitamin A and E (weekly or quarterly), citric 
acid (monthly), and lysine (monthly). Why do cartels find it necessary to meet so 
often? Court documents and insider accounts reveal that many issues are discussed 
at such gatherings: demand conditions, costs, and yes, sometimes even prices. But 
an important reason firms meet is to monitor each other’s compliance with the col-
lusive agreement. This is usually done by exchanging sales data, allowing firms 
to check that their market shares are in line with the agreement. Members of the 
isostatic-graphite cartel entered their sales figures on a pocket calculator that was 
passed around the table. Only the total was displayed, allowing each firm to check 
its own market share while keeping individual sales confidential. Often data are 
exchanged not in face-to-face meetings but indirectly through third parties, like trade 
associations, consulting firms, or statistical bureaus. The copper plumbing tubes car-
tel reported individual sales figures to the World Bureau of Metal Statistics which 
then disseminated these in aggregate form. Many other cartels—for instance, the 
amino acids and zinc phosphate cartels—used trade associations for this purpose.1

1 Details of these and other cartel cases can be found in Harrington (2006) and Marshall and Marx (2012). 
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It is clear that in these cases cartel members cannot ascertain each other’s 
sales directly; otherwise, there would be no need for firms to report these figures. 
Self-reported sales numbers, however, are difficult to verify and firms have the incen-
tive to underreport these. Recognizing this, the lysine cartel even resorted to audit-
ing its members. This was only moderately successful; a leading firm, Ajinomoto, 
was still able to hide its actual sales. Given that the data provided by firms cannot 
be verified, what is the point of having them report these? Can such “cheap-talk” 
communication really help firms monitor each other?

In this paper, we study how unverifiable communication about past sales can 
indeed facilitate collusion. We adopt, and adapt, Stigler’s (1964) classic oligopoly 
model of secret price cuts in a repeated setting; firms cannot observe each other’s 
prices nor can they observe each other’s sales. Each firm observes only its own sales 
and because of demand shocks, both common and idiosyncratic, these are noisy 
signals of other firms’ actions. Absent any communication, such imperfect mon-
itoring limits the potential for collusive behavior because—and this was Stigler’s 
point—deviations from a collusive agreement cannot be detected with confidence. 
We show, however, that if firms are able to exchange sales information, then collu-
sive outcomes can be sustained. We study situations where the correlation in firms’ 
sales is sensitive to prices. Precisely, it is high when the difference in firms’ prices 
is small—say, when both firms charge close to monopoly prices—and decreases 
when the difference is large: say, because of a unilateral price cut.2 For analytic 
convenience, we suppose that the relationship between sales and prices is governed 
by log-normal distributions, independently over time.

We show that in the statistical environment outlined above, reports of past sales 
allow firms to better monitor each other. The information communicated is not only 
unverifiable but also payoff irrelevant—it has no direct effects on current or future 
profits. Our main result is3

THEOREM 0: �For any high but fixed discount factor, when the monitoring is noisy 
but sensitive enough, there is an equilibrium with communication whose profits are 
strictly greater than those from any equilibrium without communication.

The argument underlying our main result is divided into two steps. The first task is 
to find an effective bound for the maximum equilibrium profits that can be achieved 
in the absence of any communication. In Proposition 1 we develop a bound on 
equilibrium profits by using a very simple necessary condition—a deviating strat-
egy in which a firm permanently cuts its price to an unchanging level should not be 
profitable. This deviation is, of course, rather naïve; the deviating firm does not take 
into account what the other firm knows or does. We show, however, that even this 
minimal requirement can provide an effective bound when the relationship between 
prices and sales is rather noisy relative to the discount factor. For a fixed discount 
factor, as sales become increasingly noisy, the bound becomes tighter.

2 This can arise quite naturally, for example, in a Hotelling-type model with random transport costs (see 
Section I). 

3 A formal statement of the result is in Section IV. 
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The second task is to show that the bound developed earlier can be exceeded 
with communication. We directly construct an equilibrium in which firms exchange 
(coarse) sales reports in every period (see Proposition 2). Firms charge monopoly 
prices and report their sales truthfully. As long as the reported sales of the firms—
whether high or low—are similar, monopoly prices are maintained. If the reported 
sales are significantly different—say, one firm reports high sales while the other 
reports low, a price war is triggered. These strategies form an equilibrium because 
when firms charge monopoly prices, their sales are highly correlated and so the 
likelihood that their truthful reports will agree is also high. If a firm cuts its price, 
sales become less correlated and so it cannot accurately predict its rival’s sales. Even 
if the deviating firm strategically tailors its report, the likelihood of an agreement 
is low. Thus a strategy in which differing sales reports lead to noncooperation is an 
effective deterrent. In this way, cheap-talk communication allows firms to monitor 
each other more effectively.

We emphasize that the analysis in this paper is of a different nature than that 
underlying the so-called “folk theorems” (see Mailath and Samuelson 2006). These 
show that for a fixed monitoring structure, as players become increasingly patient, 
near-perfect collusion can be achieved in equilibrium. In this paper, we keep the dis-
count factor fixed and change the monitoring structure in a way that communication 
improves profits.

Real-World Cartels.—Some key features of our model echo aspects of real-world 
cartel behavior. First, monitoring is imperfect and difficult. Second, the purpose of 
communication is to overcome monitoring difficulties and it is unverifiable. Third, 
communication allows firms to base their future behavior on relative sales—market 
shares—rather than the absolute level of sales.

The difficulties firms face in monitoring each other have been well-documented. 
Secret price cuts are hard to track. In the famous Trenton Potteries case, first-quality 
products were invoiced as being of second quality and so sold at a discount. In the 
sugar refining case, a firm included some shipping expenses in the quoted price. 
In each case, other members of the cartel discovered this “price cut” only with 
difficulty.

Clark and Houde (2014) study the internal functioning of a gasoline distribu-
tion cartel via recordings of telephone conversations. They use a “natural exper-
iment”—a public announcement of an investigation that led to a cessation of all 
communication—to deduce that higher prices and profits result when firms commu-
nicate. Clark and Houde (2014) find that the communication helped the members to 
both coordinate pricing and to monitor each other. Harrington (2006) and Marshall 
and Marx (2012) study numerous cartels and how these functioned. Again, regular 
communication for monitoring purposes seems to be a common feature of cartels in 
many industries. Often the verity of what is communicated must be inferred. Indeed, 
Genesove and Mullin (2001, p. 389, italics added) write that the meetings of the 
sugar-refining cartel often served “as a court in which an accused firm might prove 
its innocence, in some cases on factual, in others on logical, grounds.” Harrington 
(2006) writes that the monitoring of sales is even more important than the monitor-
ing of prices. As mentioned above, firms are often informed only about total indus-
try sales—via a calculator or a trade association—because these are sufficient for 
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firms to calculate their own market shares. In our model too, a price war is triggered 
by relative sales (market shares) and not by the absolute level of sales. If all firms 
experience low sales—and so shares are not too far off—then this is attributed to 
adverse market conditions and the firms continue to collude. Implicitly, a firm that 
experiences low sales cares about the reason that its sales are low and not just the 
fact that they are low. Genesove and Mullin (2001) recount an episode in which the 
president of a Western firm threatened a price war unless it could be convinced that 
its low sales were not caused by the actions of Eastern refiners. Notice that this sort 
of behavior would not be possible without communication. A firm that only knew its 
own sales would be unable to infer the reason why they were low.

Other Models of Collusion.—The application of the theory of repeated games 
to understand collusion goes back at least to Friedman (1971). His model assumes 
that all past actions are commonly observed without any noise. Under such perfect 
monitoring, given any fixed discount factor, the set of subgame perfect equilib-
rium payoffs with and without communication is the same—there is nothing use-
ful to communicate. Collusion with imperfect monitoring was studied by Green 
and Porter (1984) in a model of repeated quantity competition with noisy demand. 
Monitoring is imperfect because firms do not observe each others’ output but rather 
only the market price. Since all firms observe the same noisy signal (the common 
price), this situation is referred to as one of public monitoring. Again given any 
fixed discount factor, the set of profits from (pure strategy) public perfect equilib-
ria—in which firms’ strategies depend only on the history of past prices—with and 
without communication is also the same. Green and Porter (1984) show that with 
sufficiently low discounting, public perfect equilibria are enough to sustain collu-
sion. Our model is one of private monitoring; different firms observe different noisy 
signals (their own sales). As we show, in this environment, communication enlarges 
the set of equilibria. In both models, the firms are necessarily subject to a “type II” 
error when colluding; price wars are triggered even if no one has deviated. In the 
Green and Porter (1984) model, firms cannot distinguish between a deviation and 
an aggregate market shock; both lead to lower profits and result in price wars. In 
our model, communication allows firms to distinguish between the two; one leads to 
lower sales for all while the other leads to a discrepancy in sales and market shares. 
As mentioned above, only the latter triggers a punishment.

In our model, communication improves monitoring and, by enhancing the pos-
sibility of collusion, reduces welfare. Of course, not all communication need be 
welfare reducing. It can play a benign, even beneficial, role in some circumstances 
by allowing firms to share economically valuable information about demand or cost 
conditions. Indeed, the courts have long recognized this possibility and opined that 
such information sharing “… can hardly be deemed a restraint of commerce … or 
in any respect unlawful.” 4 Economists and legal scholars have elaborated this 
argument (Shapiro 1986 and Carlton, Gertner, and Rosenfield 1996). The sharing 
of privately known costs via cheap talk is studied in a repeated-game model by 
Athey and Bagwell (2001). They show that, for moderate discounting, cheap-talk 

4 Areeda and Kaplow (1988, pp. 337–38). 
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communication increases profits. The channel through which this occurs is quite 
different from ours, however. The Athey and Bagwell (2001) model is one of perfect 
monitoring but incomplete payoff-relevant information (costs). Communication 
allows firms to allocate greater market shares in favor of low cost firms and these 
cost savings are the source of almost all of the profit gains. Thus, communication 
actually has social benefits; the resulting production efficiencies increase welfare. 
By contrast, our model is one of imperfect monitoring but complete information. 
Communication improves monitoring and this is the only source of profit gains. 
Now, communication has no social benefits; the resulting high prices reduce wel-
fare. Another way to see the difference is by considering how a “planner” who can 
dictate the prices that firms charge would implement collusive outcomes in the two 
models. In the Athey and Bagwell (2001) model, such a planner must elicit the 
privately known cost information in order to implement maximally collusive out-
comes. The resulting mechanism design problem necessitates communication. It 
then seems clear that in the absence of a planner, colluding firms would need to 
communicate with each other as well. In our model, however, there is no need to 
communicate any information to such a planner; he/she can simply dictate that 
firms charge the monopoly price. In this case, the fact that in the absence of a plan-
ner, maximally collusive outcomes can only be achieved with communication is our 
main finding. We believe that we are the first to establish that cheap-talk communi-
cation about payoff irrelevant information can aid collusion.

The remainder of the paper is organized as follows. The next section outlines the 
nature of the market. Section II analyzes the repeated game without communication 
whereas Section III does the same with. The findings of the earlier sections are 
combined in Section IV to derive the main result. We also calculate explicitly the 
gains from communication in an example with linear demands. Omitted proofs are 
collected in the Appendix.

I.  The Market

There are two symmetric firms in the market, labeled ​1​ and ​2.​ The firms produce 
differentiated products at a constant cost, which we normalize to zero. Each firm 
sets a price ​​p​ i​​  ∈ ​ ​i​​  = ​ [0, ​p​ max​​]​​ , for its product and given the prices set by the 
firms, their sales are stochastic. Prices affect the joint distribution of sales as fol-
lows. First, they affect expected sales in the usual way; an increase in ​​p​ i​​​ decreases 
firm ​i​ ’s expected sales and increases firm ​j​ ’s expected sales. Second, they affect how 
correlated are the sales of the two firms; the more similar are the two firms’ prices, 
the higher is the correlation in sales.

To facilitate the analysis, we will suppose that given the two firms’ prices  
​p  = ​ ( ​p​ 1​​ , ​p​ 2​​)​​ , their sales ​​(​Y​ 1​​ , ​Y​ 2​​)​​ are jointly distributed according to a bivariate log 
normal density ​f ​( ​y​ 1​​ , ​y​ 2​​ | p)​​. Precisely, at prices ​p​ the log sales ​​(ln ​Y​ 1​​ , ln ​Y​ 2​​)​​ have 
a bivariate normal density with means ​​μ​1​​​(p)​,​ ​​μ​2​​​(p)​​ and variance-covariance matrix 
of the form

	​ Σ​(p)​  = ​ σ​​ 2​​[​ 
1
​ 

ρ​(p)​
​ 

ρ​(p)​
​ 

1
  ​]​​.
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Note that we are assuming that the variance of log sales is unaffected by prices.5 We 
now specify the exact manner in which prices affect the distribution of sales.

A. Expected Sales

The function ​​μ​i​​ ​( ​p​ i​​ , ​p​ j​​)​​ determining the expected log sales of firm ​i​ is assumed 
to be a continuous function that is decreasing in ​​p​ i​​​ and increasing in ​​p​ j​​ .​ The firms 
are symmetric so that ​​μ​i​​  = ​ μ​j​​ .​ Note that the first argument of ​​μ​i​​​ is always firm ​i​ ’s 
own price and the second is its competitor’s price. Because sales are log normally 
distributed, the expected sales of firm ​i​ at prices ​p​ are

	​ E[​Y​ i​​ | p]  =  exp​(​μ​i​​ ​(p)​ + ​ 1 _ 
2
 ​ ​σ​​ 2​)​ ​.

In what follows, it will be convenient to denote the expected sales ​E[​Y​ i​​ | p]​ by  
​​Q​ i​​​(​p​ i​​ , ​p​ j​​)​.​ The function ​​Q​ i​​​ is then firm ​i​ ’s expected demand function.

B. Correlation of Sales

We will suppose the correlation between firms’ (log) sales is high when they 
charge similar prices and low when they charge dissimilar prices. This is formal-
ized as:

ASSUMPTION: �There exists ​​ρ​0​​  ∈ ​ (0, 1)​​ and a symmetric function ​γ ​( ​p​ 1​​ , ​p​ 2​​)​  ∈ ​
[0, 1]​​ such that ​ρ  = ​ ρ​0​​ γ ​( ​p​ 1​​ , ​p​ 2​​)​​ and ​γ​ satisfies the following conditions: (i ) for all ​

p,​ ​γ ​( p, p)​  =  1​; and (ii ) for all ​​p​ 1​​  ≤ ​ p​ 2​​ ,​ ​∂  γ/∂ ​p​ 1​​  >  0​ and ​​∂ ​​ 2​ γ/∂ ​p​ 1​ 2​  ≥  0​ and so, ​
γ​ is an increasing and convex function of ​​p​ 1​​.​

Note that ​∂ρ/∂ ​p​ 1​​  = ​ ρ​0​​ ∂ γ/∂ ​p​ 1​​,​ and so for fixed ​γ,​ an increase in ​​ρ​0​​​ rep-
resents an increase in the sensitivity of the correlation to prices. Some sim-
ple examples of the functions ​γ​ that satisfy the assumption are: ​γ ​( ​p​ 1​​ , ​p​ 2​​)​  
=  min​( ​p​ 1​​ , ​p​ 2​​)​/max​( ​p​ 1​​ , ​p​ 2​​)​​ and ​γ ​( ​p​ 1​​ , ​p​ 2​​)​  =  1/​(1 + ​| ​p​ 1​​ − ​p​ 2​​ |​)​.​

Figure 1 is a schematic illustration of the stochastic relationship between prices 
and sales.

This kind of correlation structure is quite natural in many settings. Consider, 
for example, a symmetric Hotelling-type market in which the firms are located at 
different points on the line and consumers have identical but random “transport” 
costs. First, consider the case where the two firms charge very similar prices. In 
this case, their sales are similar—roughly, they split the market—no matter what 
the realized transport costs are. In other words, when firms charge similar prices, 
their sales are highly correlated. Next, consider the case where the two firms’ 
prices are dissimilar, say, firm ​1​’s price is much lower than firm ​2​’s price. When 
transport costs are high, consumers are not that price sensitive and so the firms’ 

5 A heteroskedastic specification in which the variance increased with the mean log sales can be easily 
accommodated. 
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realized sales are rather similar. But when transport costs are low, consumers are 
rather price sensitive and so firm ​1​’s sales are much higher than firm ​2​’s sales. In 
other words, when firms charge dissimilar prices, the correlation between their 
sales is low. Of course, the same kind of reasoning applies if we substitute search 
costs for transport costs.

Another setting in which the kind of correlation structure postulated above 
arises is the “random utility” model for discrete choice, widely used as the basis 
of many empirical industrial organization studies. In such a specification, con-
sumers’ utility is assumed to have both common and idiosyncratic components 
and the common component plays a role not unlike that of transport costs in 
the Hotelling model. Again, consider first the case where firms charge similar  
prices. Now, regardless of the realization of the common component, their sales 
are similar and so highly correlated. But when the firms charge different prices, 
how close their sales are depends on the realization of the common component 
of utility. When the common component is high, prices are not that important 
for consumers and so the sales of the two firms will be relatively similar. When 
the common component is low, however, price differences become important, the 
lower-priced firm will experience much higher sales than its rival, and so the two 
firms’ sales will be dissimilar. Overall, this means that the correlation between 
their sales is lower.

Figure 1. The Assumed Stochastic Relationship between Prices  
and log Sales via the Contours of the Resulting Normal Densities 

Notes: When firms charge the same price, their log sales have the same mean and high correlation. If firm 1 cuts its 
price, its mean log sales rise while those of its rival fall. Correlation also falls.

lnY1
µ µ1

p1 = p2

µ

µ2

lnY2

p1 < p2
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C. One-Shot Game

Firms maximize their expected profits:

	​ ​π​i​​ ​( ​p​ i​​ , ​p​ j​​)​  = ​ p​ i​​ ​Q​ i​​ ​( ​p​ i​​ , ​p​ j​​)​​,

and we suppose that ​​π​i​​​ is strictly concave in ​​p​ i​​​ .6
Let ​G​ denote the one-shot game where the firms choose prices ​​p​ i​​​ and ​​p​ j​​​ and the 

expected profits are given by ​​π​i​​ ​( ​p​ i​​ , ​p​ j​​)​.​ Under the assumptions made above, there 
exists a symmetric Nash equilibrium ​​( ​p​ N​​ , ​p​ N​​)​​ of ​G​ and let ​​π​N​​​ be the resulting profits 
of a firm.7

Suppose that ​​( ​p​ M​​ , ​p​ M​​)​​ is the unique solution to the monopolist’s problem:

	​​ max​ 
​p​i​​, ​p​j​​

​   ​ ​ ∑ 
i
​ 
 
 ​​ ​ π​i​​ ​( ​p​ i​​ , ​p​ j​​)​​,

and let ​​π​M​​​ be the resulting profits per firm. We assume that monopoly pricing ​​
( ​p​ M​​ , ​p​ M​​)​​ is not a Nash equilibrium. For technical reasons we will also assume that 
a firm’s expected sales are bounded away from zero.

II.  Collusion without Communication

Let ​​G​ δ​​ ​( f )​​ denote the infinitely repeated game in which firms use the discount fac-
tor ​δ  <  1​ to evaluate profit streams. Time is discrete. In each period, firms choose 
prices ​​p​ i​​​ and ​​p​ j​​​ and given these prices, their sales are realized according to ​f​ as 
described above. As in Stigler (1964), each firm ​i​ observes only its own realized 
sales ​​y​ i​​​; it observes neither ​j​ ’s price ​​p​ j​​​ nor ​j​ ’s sales ​​y​ j​​ .​ We will refer to ​f​ as the mon-
itoring structure.

Let ​​h​ i​ t−1​  =  ( ​p​ i​ 1​, ​y​ i​ 1​, ​p​ i​ 2​ , ​y​ i​ 2​, … , ​p​ i​ t−1​, ​y​ i​ t−1​ )​ denote the private history observed 
by firm ​i​ after ​t − 1​ periods of play and let ​​​ i​ t−1​​ denote the set of all private histories 
of firm ​i.​ In period ​t,​ firm ​i​ chooses its prices ​​p​ i​ t​​ knowing ​​h​ i​ t−1​​ and nothing else.

A strategy ​​s​ i​​​ for firm ​i​ is a collection of functions ​​(​s​ i​ 1​, ​s​ i​ 2​, …)​​ such 
that ​​s​ i​ t​ : ​​ i​ t−1​  →  Δ​(​​i​​)​,​ where ​Δ​(​​i​​)​​ is the set of distributions over ​​​i​​ .​ Thus, we 
are allowing for the possibility that firms may randomize. Of course, since ​​​ i​ 0​​ is 
null, ​​s​ i​ 1​  ∈  Δ​(​​i​​)​.​ A strategy profile ​s​ is simply a pair of strategies ​​(​s​ 1​​, ​s​ 2​​)​​. A Nash 
equilibrium of ​​G​ δ​​ ​( f )​​ is strategy profile ​s​ such that for each ​i​ , the strategy ​​s​ i​​​ is a best 
response to ​​s​ j​​​ .

The main result of this section provides an upper bound to the joint profits of the 
firms in any Nash equilibrium of the repeated game without communication.8 The 
task is complicated by the fact that there is no known characterization of the set of 
equilibrium payoffs of a repeated game with private monitoring. Because the players 
in such a game observe different histories—each firm knows only its own past prices 

6 In terms of the primitives, this is guaranteed if ​​μ​i​​​ is sufficiently concave. 
7 If the one-shot game has multiple symmetric Nash equilibria, let ​​( ​p​N​​ , ​p​N​​)​​ denote the one with the lowest 

equilibrium profits. 
8 Of course, the bound so derived applies to any refinement of Nash equilibrium as well. 
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and sales—such games lack a straightforward recursive structure and the kinds of 
techniques available to analyze equilibria of repeated games with public monitoring 
(as in the work of Abreu, Pearce, and Stacchetti 1990) cannot be used here.

Instead, we proceed as follows. Suppose we want to determine whether there is a 
Nash equilibrium of ​​G​ δ​​ ​( f )​​ such that the sum of firms’ discounted average profits are 
within ​ε​ of those of a monopolist, that is, ​2 ​π​M​​ .​ If there were such an equilibrium, 
then both firms must set prices close to the monopoly price ​​p​ M​​​ often (or equiva-
lently, with high probability). Now consider a secret price cut by firm ​1​ to ​​ _ p ​​ , the 
static best response to ​​p​ M​​ .​ Such a deviation is profitable today because firm ​2​’s price 
is close to ​​p​ M​​​ with high probability. How this affects firm ​2​’s future actions depends 
on the quality of monitoring, that is, how much firm ​1​’s price cut affects the distri-
bution of ​2​’s sales. If the quality of monitoring is poor, firm ​1​ can keep on deviating 
to ​​ _ p ​​ without too much fear of being punished. In other words, a firm has a profitable 
deviation, contradicting that there were such an equilibrium.

This reasoning shows that the resulting bound on Nash equilibrium profits 
depends on three factors: (i) the trade-off between the incentives to deviate and effi-
ciency in the one-shot game9; (ii) the quality of the monitoring, which determines 
whether the short-term incentives to deviate can be overcome by future actions; and, 
of course, (iii) the discount rate.

We consider each of these factors in turn.

A. Incentives versus Efficiency in the One-Shot Game

Define, as above, ​​ _ p ​  =  arg ​max​ ​p​ i​​​ 
​ ​ ​ π​i​​​(​p​ i​​ , ​p​ M​​)​,​ the static best-response to ​​p​ M​​ .​ Let ​

α  ∈  Δ​(​​1​​ × ​​2​​)​​ be a joint distribution over firms’ prices. We want to find an ​α​ 
such that (i) the sum of the expected profits from ​α​ is within ​ε​ of ​2 ​π​M​​​ ; and (ii) it 
minimizes the (sum of) the incentives to deviate to ​​ _ p ​.​ To that end, for ​ε  ≥  0,​ define

(1)	​ Ψ​(ε)​  ≡ ​ min​ 
α
​ 

 
 ​ ​ ∑ 

i
​ 
 
 ​​ ​ [​π​i​​ ​( ​ _ p ​, ​α​j​​)​ − ​π​i​​ ​(α)​]​ ​

subject to

	​​ ∑ 
i
​ 
 
 ​​ ​ π​i​​ ​(α)​  ≥  2 ​π​M​​ − ε​,

where ​​α​j​​​ denotes the marginal distribution of ​α​ over ​​​j​​ .​
The function ​Ψ​ measures the trade-off between the incentives to deviate (to the 

price ​​ _ p ​​) and firms’ profits. Precisely, if the firms’ profits are within ​ε​ of those of 
a monopolist, then the total incentive to deviate is ​Ψ​(ε)​.​ It is easy to see that ​Ψ​ is 
(weakly) decreasing. Two other properties of ​Ψ​ also play an important role. First, ​
Ψ​ is convex because both the objective function and the constraint are linear in 
the choice variable ​α.​ Second, ​​lim​ ε→0​ ​ ​  Ψ​(ε)​  >  0.​ To see this, note that ​Ψ​(0)​  >  0​ 
because at ​ε  =  0,​ the only feasible solution to the problem above is ​​( ​p​ M​​ , ​p​ M​​)​​ and 

9 By “efficiency” we mean how efficient the cartel is in achieving high profits and not “social efficiency.” 
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by assumption, this is not a Nash equilibrium. Finally, the fact that ​Ψ​ is continuous 
at ​ε  =  0​ follows from the Berge maximum theorem.

Since ​​( ​p​ N​​ , ​p​ N​​)​​ is feasible for the program defining ​Ψ​ when ​ε  =  2 ​π​M​​ − 2 ​π​N​​ ,​ it 
follows that ​Ψ​(2 ​π​M​​ − 2 ​π​N​​)​  ≤  0.​ We emphasize that ​Ψ​ is completely determined 
by the one-shot game ​G​. Define the inverse of ​Ψ​ by

	​ ​Ψ​​ −1​​(x)​  =  sup​ ​{ε : Ψ​(ε)​  =  x}​​.

The bound we develop below will depend on ​​Ψ​​ −1​ .​

B. Quality of Monitoring

Consider two price pairs ​p  = ​ ( ​p​ 1​​ , ​p​ 2​​)​​ and ​p′  = ​ ( ​p​ 1​ ′ ​ , ​p​ 2​ ′ ​)​​ and the resulting mar-
ginal distributions of firm ​i​ ’s sales: ​​f ​i​​ ​(· | p)​​ and ​​f​ i​​​(· | p′  )​.​ If these two distributions 
are close together, then it will be difficult for firm ​i​ to detect the change from ​p​ to ​
p′.​ Thus, the quality of monitoring can be measured by the maximum “distance” 
between any two such distributions. In what follows, we use the so-called total vari-
ation metric to measure this distance. Since ​f​ is symmetric, the quality of monitoring 
is the same for both firms.

Definition 1: The quality of a monitoring structure ​f​ is defined as

	​ η  = ​ max​ 
p, ​p​  ​ ′​

​   ​ ​​ ‖ ​f​ i​​ ​(· | p)​ − ​f​ i​​ ​(· | p′  )​‖​​
TV

​​​ ,

where ​​f​ i​​​ is the marginal of ​f​ on ​​​i​​ ,​ the set of ​i​ ’s sales, and ​​​‖g − h‖​​TV​​​ denotes the 
total variation distance between ​g​ and ​h​.10

It is important to note that the quality of monitoring depends only on the mar-
ginal distributions ​​f​ i​​ ​(· | p)​​ over ​i​ ’s sales and not on the joint distributions of sales  
​f ​(· | p)​.​ In particular, the fact that the marginal distributions ​​f​ i​​ ​(· | p)​​ and ​​f​ i​​ ​(· | p′  )​​ are 
close—​η​ is small—does not imply that the underlying joint distributions ​f ​(· | p)​​ and ​
f ​(· | p′  )​​ are close. Because of symmetry, ​η​ is the same for both firms. When ​f ​(· | p)​​ 
is a bivariate log normal, ​η​ can be explicitly determined as

(2)	​ η  =  2Φ​(​ Δ ​μ​max​​ _____ 
2σ ​ )​ − 1​,

where ​Φ​ is the cumulative distribution function of a univariate standard normal 
and ​Δ​μ​max​​  =  ma​x​p, ​p​  ​ ′​​​​ | ln ​Q​ i​​ ( ​p​ i​​ , ​p​ j​​ ) − ln ​Q​ i​​ ( ​p​ i​ ′ ​ , ​p​ j​ ′ ​ )|​ is the maximum possible dif-
ference in log expected sales. As ​σ​ increases, ​η​ decreases and goes to zero as ​σ​ 
becomes arbitrarily large.

10 The total variation distance between two densities ​g​ and ​h​ on ​X​ is defined as ​​​‖ g − h ‖​​TV​​  = ​  1 _ 2 ​  ​∫ X​ 
 
 ​​ ​| g​(x)​ −  

h​(x)​ |​ dx.​ 
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C. A Bound on Profits

The main result of this section, stated below, develops a bound on Nash equilib-
rium profits when there is no communication. An important feature of the bound is 
that it is independent of any correlation between firms’ sales and depends only on 
the marginal distribution of sales.

Proposition 1: In any Nash equilibrium of the repeated game without commu-
nication, the average profits

(3)	​ ​π​1​​ + ​π​2​​  ≤  2 ​π​M​​ − ​Ψ​​ −1​​(4​_ π ​η ​  ​δ​​ 2​ ____ 
1 − δ ​)​ ,​

where ​​_ π ​  = ​ max​ ​p​j​​​ 
​ ​ ​ π​i​​ ​( ​ _ p ​, ​p​ j​​)​​ and ​η​ is the quality of monitoring.

Before embarking on a formal proof of Proposition 1 it is useful to outline the 
main ideas (see Figure 2 for an illustration). A necessary condition for a strategy 
profile ​s​ to be an equilibrium is a deviation by firm ​1​ to a strategy ​​​ _ s ​​1​​​ in which it 

0

(πN, πN)

(πM, πM)

π1

Ψ−1

π2

Figure 2. The Set of Feasible Profits of the Two Firms and the Position of the  
No-Communication Bound  

Note: The bound lies between monopoly and one-shot Nash profits and its size depends on the demand structure, 
the discount factor, and the monitoring quality.
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always charges ​​ _ p ​​ not be profitable. This is done in two steps. First, we consider a 
fictitious situation in which firm ​1​ assumes that firm ​2​ will not respond to its devia-
tion. The higher the equilibrium profits, the more profitable would be the proposed 
deviation in the fictitious situation; this is exactly the effect the function ​Ψ​ captures 
in the one-shot game and Lemma 1 shows that ​Ψ​ captures the same effect in the 
repeated game as well. Second, when the monitoring is poor—​η​ is small—firm ​2​’s 
actions cannot be very responsive to the deviation and so the fictitious situation is a 
good approximation for the true situation. Lemma 5 measures precisely how good 
this approximation is and quite naturally this depends on the quality of monitoring 
and the discount factor. Notice that profits both from the candidate equilibrium and 
from the play after the deviation are evaluated in ex ante terms.

Observe that if we fix the quality of monitoring ​η​ and let the discount factor ​δ​ 
approach one, then the bound becomes trivial ​​(since ​lim​ δ→1​ ​ ​ ​ Ψ​​ −1​​(4​_ π ​η ​δ​​ 2​/​(1 − δ)​)​  
=  0)​​ and so is consistent with Sugaya’s (2013) folk theorem. On the other hand, if 
we fix the discount factor ​δ​ and decrease the quality of monitoring ​η,​ the bound con-
verges to ​2 ​π​M​​ − ​Ψ​​ −1​​(0)​  <  2 ​π​M​​​ and is effective. One may reasonably conjecture 
that if there were “zero monitoring” in the limit, that is, if ​η  →  0​ , then no collusion 
would be possible. But in fact ​2 ​π​N​​  <  2 ​π​M​​ − ​Ψ​​ −1​​(0)​​ so that even with zero mon-
itoring, Proposition 1 does not rule out the presence of collusive equilibria. This is 
consistent with the finding of Awaya (2014b).11

Proof Of Proposition 1:
We argue by contradiction. Suppose that ​​G​ δ​​ ​( f )​​ has an equilibrium, say ​s​ , whose 

average total profits12 ​​π​1​​​(s)​ + ​π​2​​​(s)​​ exceed the bound on the right-hand side of (3). 
If we write ​ε​(s)​  ≡  2 ​π​M​​ − ​π​1​​​(s)​ − ​π​2​​​(s)​,​ then this is equivalent to

	​ Ψ​(ε(s))​  >  4​_ π ​η ​  ​δ​​ 2​ _ 
1 − δ ​​ .

Given the strategy profile ​s,​ define

	​ ​α​ j​ t​  = ​ E​ s​​ ​[​s​ j​ t​ ​(​h​ j​ t−1​)​]​  ∈  Δ​(​​j​​)​​,

where the expectation is defined by the probability distribution over ​t − 1​ joint his-
tories ​(​h​ i​ t−1​ , ​h​ j​ t−1​ )​ determined by ​s.​ Note that ​​α​j​​​ depends on the strategy profile ​
s​ and not just ​​s​ j​​​. Let ​​α​j​​  =  (​α​ j​ 1​, ​α​ j​ 2​, …)​ denote the strategy of firm ​j​ in which it 
plays ​​α​ j​ t​​ in period ​t​ following any ​t − 1​ period history. The strategy ​​α​j​​​ replicates the 
ex ante distribution of prices ​​p​ j​​​ resulting from ​s​ but is nonresponsive to histories.

Let ​​​ _ s ​​ i​​​ denote the strategy of firm ​i​ in which it plays ​​ _ p ​​ with probability one fol-
lowing any history. In the Appendix we show that the function ​Ψ,​ which measures 

11 Awaya (2014b) constructs an example in which there is zero monitoring—the marginal distribution of every 
player’s signals is the same for all action profiles—but, nevertheless, there are nontrivial equilibria. 

12 We use ​​π​i​​ ​(s)​​ to denote the discounted average payoffs from the strategy profile ​s​ as well as the payoffs in 
the one-shot game. 
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the incentive-efficiency trade-off in the one-shot game can also be used to measure 
this trade-off in the repeated game as well. Essentially, the convexity of ​Ψ​ ensures 
that the best dynamic incentives are in fact stationary; the argument resembles a 
consumption smoothing result. Formally, from Lemma 1,

(4)	​​ ∑ 
i
​ 
 
 ​​ ​ [​π​i​​ ​(​​ _ s ​​ i​​ , ​α​j​​)​ − ​π​i​​​(s)​]​  ≥  Ψ​(ε(s))​ ​.

Second, from Lemma 5, we have for ​i  =  1, 2​

(5)	​​ |​π​i​​ ​(​​ _ s ​​ i​​ , ​s​ j​​)​ − ​π​i​​ ​(​​ _ s ​​ i​​ , ​α​j​​)​|​  ≤  2 ​_ π ​ η ​  ​δ​​ 2​ _ 
1 − δ ​​ ,

which follows from the fact that the total variation distance between the distribu-
tion of ​j​ ’s sales induced by ​​(​​ _ s ​​ i​​ , ​s​ j​​)​​ and ​​(​​ _ s ​​ i​​ , ​α​j​​)​​ in any one period does not exceed ​
η​ (Lemma 3) and, as a result, the distance between distribution of ​j​ ’s ​t​-period sales 
histories does not exceed ​t η​ (Lemma 4). A simple calculation then shows that the 
difference in payoffs does not exceed the right-hand side of (5).

Combining (4) and (5), we have

	​​ ∑ 
i
​ 
 
 ​​ ​ (​π​i​​ (​​ 

_ s ​​ i​​ , ​s​ j​​) − ​π​i​​ (s))​  = ​ ∑ 
i
​ 
 
 ​​ ​ (​π​i​​ (​​ 

_ s ​​ i​​, ​α​j​​) − ​π​i​​ (s))​ + ​∑ 
i
​ 
 
 ​​ ​ (​π​i​​ (​​ 

_ s ​​ i​​ , ​s​ j​​) − ​π​i​​ (​​ 
_ s ​​ i​​ , ​α​j​​))​

	 ≥ ​ ∑ 
i
​ 
 
 ​​ ​ (​π​i​​ (​​ 

_ s ​​ i​​ , ​α​j​​) − ​π​i​​ (s))​ − ​∑ 
i
​ 
 
 ​​ ​ |​π​i​​ (​​ 

_ s ​​ i​​ , ​s​ j​​) − ​π​i​​ (​​ 
_ s ​​ i​​ , ​α​j​​)|​

	 ≥  Ψ​(ε(s))​ − 4 ​_ π ​ η ​  ​δ​​ 2​ _ 
1 − δ ​​  ,

which is strictly positive. But this means that at least one firm has a profitable devi-
ation, contradicting the assumption that ​s​ is an equilibrium. ∎

In a recent paper, Pai, Roth, and Ullman (2014) also provide a bound on equilib-
rium payoffs that is effective when monitoring is poor. They derive necessary con-
ditions for an equilibrium by considering “one-shot” deviations in which a player 
cheats in one period and then resumes equilibrium play. The Pai, Roth, and Ullman 
(2014) bound is based on how the joint distribution of the private signals is affected 
by players’ actions.

In games with private monitoring, “one-shot” deviations affect the deviating 
players’ beliefs about the other player’s signals thereafter and so affect his sub-
sequent (optimal) play. The optimal play, quite naturally, exploits any correlation 
in signals. The deviation we consider—a permanent price cut—is rather naïve but 
has the feature that future play, while suboptimal, is straightforward. This renders 
unnecessary any conjectures about the future behavior of the other firm and so our 
bound does not depend on any correlation between signals (sales); it is based solely 
on the marginal distributions.

When we consider communication in the next section, we will exploit the cor-
relation of signals to construct an equilibrium whose profits exceed our bound 
(Proposition 2 below). The fact that correlation can vary while keeping the marginal 
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distributions fixed is key to isolating the effects of communication. The bound 
obtained by Pai, Roth, and Ullman (2014) applies to both forms of collusion—
with and without communication—and cannot distinguish between the two. Sugaya 
and Wolitzky (2015) also provide a bound but one that is based on entirely differ-
ent ideas. For a fixed discount factor, they ask which monitoring structure yields 
the highest equilibrium profits. This, of course, then identifies a bound that applies 
across all monitoring structures. But this method, while quite general, again cannot 
distinguish between the two settings.

III.  Collusion with Communication

We now turn to a situation in which firms can, in addition to setting prices, com-
municate with each other in every period, sending one of a finite set of messages 
to each other. The sequence of actions in any period is as follows: firms set prices, 
receive their private sales information, and then simultaneously send messages to 
each other. Messages are costless—the communication is “cheap talk”—and are 
transmitted without any noise. The communication is unmediated.

Formally, there is a finite set of messages ​​M​ i​​​ for each firm and that each ​​M​ i​​​ con-
tains at least two elements. A ​t − 1​ period private history of firm ​i​ now consists of 
the complete list of its own prices and sales as well as the list of all messages sent 
and received. Thus a private history is now of the form

	​ ​h​ i​ t−1​  = ​​ (​p​ i​ τ​, ​y​ i​ τ​, ​m​ i​ τ​, ​m​ j​ τ​  )​​ τ  =1
​ t−1 ​​,

and the set of all such histories is denoted by ​​​ i​ t−1​.​ A strategy for firm ​
i​ is now a pair ​​(​s​ i​​ , ​r​ i​​)​​ where ​​s​ i​​  = ​ (​s​ i​ 1​, ​s​ i​ 2​, …)​​ , the pricing strategy, and  
​​r​ i​​  = ​ (​r​ i​ 1​ , ​r​ i​ 2​, …)​,​ the reporting strategy, are collections of functions: ​​s​ i​ t​ : ​​ i​ t−1​  →  
Δ​(​​i​​)​​ and ​​r​ i​ t​ : ​​ i​ t−1​ × ​​i​​ × ​​i​​  →  Δ​(​M​ i​​)​​ where ​​​i​​​ denotes the set of possible sales 
realizations.

Call the resulting infinitely repeated game with communication ​​G​ δ​ com​​( f )​.​ A 
sequential equilibrium of ​​G​ δ​ com​​( f )​​ is a strategy profile ​​(s, r)​​ such that for each ​i​ and 
every private history ​​h​ i​ t−1​​ , the continuation strategy of ​i​ following ​​h​ i​ t−1​,​ denoted by ​​
(​s​ i​​ , ​r​ i​​)​ ​|​​h​ i​ 

t−1​​​ ,​ is a best response to ​E ​[(​s​ j​​ , ​r​ j​​) ​|​​h​ j​ 
t−1​​​ | ​h​ i​ t−1​]​.​ 

13

A. Equilibrium Strategies

Monopoly pricing will be sustained using a grim trigger pricing strategy together 
with a threshold sales-reporting strategy in a manner first identified by Aoyagi 
(2002). Since the price set by a competitor is not observable, the trigger will be 
based on the communication between firms, which is observable. The communi-
cation itself consists only of reporting whether one’s sales were “high”—above a 
commonly known threshold—or “low.” Firms start by setting monopoly prices and 
continue to do so as long as the two sales reports agree—both firms report “high” 

13 Sequential equilibrium is usually defined only for games with a finite set of actions and signals. We are apply-
ing it to a game with a continuum of actions and signals. But this causes no problems in our model because signals 
(sales) have full support and beliefs are well defined. 
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or both report “low.” Differing sales reports trigger permanent noncooperation as a 
punishment.

Specifically, consider the following strategy ​​(​s​ i​ ∗​, ​r​ i​ ∗​)​​ in the repeated game with 
communication where there are only two possible messages ​H​ (“high”) and ​L​ 
(“low”). The pricing strategy ​​s​ i​ ∗​​ is:

•	 In period ​1,​ set the monopoly price ​​p​ M​​​.
•	 In any period ​t  >  1,​ if in all previous periods, the reports of both firms were 

identical (both reported ​H​ or both reported ​L​), set the monopoly price ​​p​ M​​​; oth-
erwise, set the Nash price ​​p​ N​​​.

The reporting strategy ​​r​ i​ ∗​​ is:

•	 In any period ​t  ≥  1,​ if the price set was ​​p​ i​​  = ​ p​ M​​​ , then report ​H​ if log sales ​
ln ​y​ i​ t​  ≥​ ​​μ​M​​​; otherwise, report ​L.​

•	 In any period ​t  ≥  1,​ if the price set was ​​p​ i​​  ≠ ​ p​ M​​​ , then report ​H​ if ​ln ​y​ i​ t​  ≥​ ​​μ​i​​ +  
​ 1 _ ρ ​ ​(​μ​M​​ − ​μ​j​​)​​; otherwise, report ​L.​

​​(​μ​M​​ = ln ​Q​ i​​ ​( ​p​ M​​, ​p​ M​​)​ − ​ 1 _ 2 ​ ​σ​​ 2​, ​μ​i​​ = ln ​Q​ i​​ ​( ​p​ i​​ , ​p​ M​​)​ − ​ 1 _ 2 ​ ​σ​​ 2​, and ​μ​j​​ = ln ​Q​ j​​ ​( ​p​ M​​ , ​p​ i​​)​ −  

​ 1 _ 2 ​ ​σ​​ 2​.)​​

Denote by ​​(​s​​ ∗​, ​r​​ ∗​)​​ the resulting strategy profile. We will establish that if firms 
are patient enough and the monitoring structure is noisy (​σ​ is high) but correlated  
(​​ρ​0​​​ is high), then the strategies specified above constitute an equilibrium. We begin 
by showing that the reporting strategy ​​r​ i​ ∗​​ is indeed optimal.14

B. Optimality of Reporting Strategy

Suppose firm ​2​ follows the strategy ​​(​s​ 2​ ∗​, ​r​ 2​ ∗​)​​ and until this period, both have made 
identical sales reports. Recall that a punishment will be triggered only if the reports 
disagree. Thus, firm ​1​ will want to maximize the probability that its report agrees 
with that of firm ​2​. Since firm ​2​ is following a threshold strategy, it is optimal for 
firm ​1​ to do so as well. If firm ​1​ adopts a threshold of ​λ​ such that it reports ​H​ when 
its log sales exceed ​λ,​ and ​L​ when they are less than ​λ,​ the probability that the 
reports will agree is

	​ Pr​ ​[ln ​Y​ 1​​  <  λ, ln ​Y​ 2​​  < ​ μ​M​​]​ + Pr​ ​[ln ​Y​ 1​​  >  λ, ln ​Y​ 2​​  > ​ μ​M​​]​​,

which, for normally distributed variables, is

	​​ ∫ 
−∞

​ ​ λ−​μ​1​​ _____ σ ​ ​​ ​∫ 
−∞

​ ​ ​μ​M​​−​μ​2​​ ______ σ ​ ​​ ϕ​(​z​ 1​​, ​z​ 2​​; ρ)​ d ​z​ 2​​ d ​z​ 1​​ + ​∫ ​ λ−​μ​1​​ _____ σ ​ ​ 
∞

 ​​ ​ ∫ ​ ​μ​M​​−​μ​2​​ _ σ ​ ​ 
∞

 ​​  ϕ​(​z​ 1​​, ​z​ 2​​; ρ)​ d ​z​ 2​​ d ​z​ 1​​​,

14 The strategies described above have been dubbed semi-public by Compte (1998) and others. All actions 
depend only on past public signals—that is, the communication. The communication itself also depends on current 
private signals. 
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where ​ϕ​(​z​ 1​​ , ​z​ 2​​ ; ρ)​​ is a standard bivariate normal density with correlation coefficient ​
ρ  ∈ ​ (0, 1)​.​15 Maximizing this with respect to ​λ​ results in the optimal reporting 
threshold:

(6)	​ λ​(​p​ 1​​)​  = ​ μ​1​​ + ​ 1 _ ρ ​ ​(​μ​M​​ − ​μ​2​​)​ ​,

where ​​μ​1​​, ​μ​2​​​ , and ​ρ​ are evaluated at the price pair ​​( ​p​ 1​​, ​p​ M​​)​.​
If firm ​1​ deviates and cuts its price to ​​p​ 1​​  < ​ p​ M​​ ,​ then clearly the expected (log) 

sales of the two firms will be such that ​​μ​1​​  > ​ μ​M​​  > ​ μ​2​​ .​ Thus, ​λ​( ​p​ 1​​)​  > ​ μ​1​​  > ​ μ​M​​ ,​ 
which says, as expected, that once firm ​1​ cuts its price—and so experiences sto-
chastically higher sales—it should optimally underreport relative to the equilib-
rium reporting strategy ​​r​ 1​ ∗​​. On the other hand, if firm ​1​ does not deviate and sets a 
price ​​p​ M​​​ , then (6) implies that it is optimal for it to use a threshold of ​​μ​M​​  =  λ​(​p​ M​​)​​ 
as well.

We have thus established that if firm ​2​ plays according to ​​(​s​ 2​ ∗​ , ​r​ 2​ ∗​)​,​ then following 
any price ​​p​ 1​​​ that firm ​1​ sets, the communication strategy ​​r​ 1​ ∗​​ is optimal. The opti-
mality of the proposed pricing strategy ​​s​ 1​ ∗​​ depends crucially on the probability of 
triggering the punishment and we now establish how this is affected by the extent 
of a price cut.

If firm ​1​ sets a price of ​​p​ 1​​ ,​ the probability that its report will be the same as that 
of firm ​2​ (and so the punishment will not be triggered) is given by

(7)	 ​β ​( ​p​ 1​​)​  ≡ ​ ∫ 
−∞

​ ​ 
λ​(​p​ 1​​)​−​μ​1​​ _______ σ ​ ​​ ​∫ 

−∞
​ ​ ​μ​M​​−​μ​2​​ _ σ ​ ​​ ϕ​(​z​ 1​​, ​z​ 2​​; ρ)​ d ​z​ 2​​ d ​z​ 1​​ 

	 + ​∫ ​ λ​(​p​ 1​​)​−​μ​1​​ _______ σ ​ ​ 
∞

 ​​ ​ ∫ ​ ​μ​M​​−​μ​2​​ _ σ ​ ​ 
∞

 ​​  ϕ​(​z​ 1​​, ​z​ 2​​; ρ)​ d ​z​ 2​​ d ​z​ 1​​​ .

Note that while ​λ​( ​p​ 1​​)​​ , ​​μ​1​​​ , ​​μ​2​​​, and the correlation coefficient ​ρ​ depend on ​​p​ 1​​ ,​ ​σ​ 

does not. Observe also that for any ​​p​ 1​​  ≤ ​ p​ M​​  ,​ ​β​( ​p​ 1​​)​  ≥  Φ​(​ ​μ​M​​ − ​μ​2​​ _ σ ​ )​  ≥ ​  1 _ 2 ​​ where ​
Φ​ denotes the cumulative distribution function of the standard univariate normal. 
In other words, the probability of detecting a deviation is less than one-half. This 
is because firm ​1​ could always adopt a reporting strategy in which after a devia-
tion to ​​p​ 1​​  < ​ p​ M​​ ,​ it always says ​L​ independently of its own sales, effectively set-
ting ​λ​( ​p​ 1​​)​  =  ∞.​ This guarantees that firm ​1​’s report will be the same as firm ​2​’s 
report with a probability equal to ​Φ​(​ ​μ​M​​ − ​μ​2​​ _ σ ​ )​.​ Figure 3 depicts the function ​β​ when ​
ρ  = ​ ρ​0​​/​(1 + ​| ​p​ 1​​ − ​p​ 2​​ |​)​.​

If both follow the proposed pricing and reporting strategies, the probability that 
their reports will agree is just ​β​( ​p​ M​​)​,​ obtained by setting ​λ​( ​p​ 1​​)​  = ​ μ​1​​  = ​ μ​2​​  = ​ μ​M​​​ 
and ​ρ  = ​ ρ​0​​​ in (7). Sheppard’s formula for the cumulative of a bivariate normal (see 
Tihansky 1972) implies that

(8)	​ β ​( ​p​ M​​)​  = ​  1 _ π ​ arccos​(−​ρ​0​​)​ ,​

15 The standard (with both means equal to ​zero​ and both variances equal to ​one​) bivariate normal density is  
​ϕ​(​z​ 1​​ , ​z​ 2​​ ; ρ)​  =  exp ​(−​(​z​ 1​ 2​ + ​z​ 2​ 2​ − 2ρ ​z​ 1​​ ​z​ 2​​)​/2​(1 − ​ρ​​ 2​)​)​ ÷ 2π ​√ 

_
 1 − ​ρ​​ 2​ ​​. 
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which is increasing in ​​ρ​0​​​ and converges to ​1​ as ​​ρ​0​​​ goes to ​1.​ Importantly, this prob-
ability does not depend on ​σ​.

C. Optimality of Pricing Strategy

We have argued above that given that the other firm follows the prescribed strat-
egy, the reporting strategy ​​r​ 1​ ∗​​ is an optimal response for firm ​1​. To show that the 
strategies ​​(​s​​ ∗​, ​r​​ ∗​)​​ constitute an equilibrium, it only remains to show that the pricing 
strategy ​​s​ 1​ ∗​​ is optimal as well. This is verified next.

Proposition 2: There exists a ​​δ _​​ such that for all ​δ  > ​ δ _​,​ once ​σ​ and ​​ρ​0​​​ are large 
enough, then ​​(​s​​ ∗​, ​r​​ ∗​)​​ constitutes an equilibrium of ​​G​ δ​ com​​( f )​,​ the repeated game with 
communication.

Proof: 
First, note that the lifetime average profit ​​π​​ ∗​​ resulting from the proposed strate-

gies is given by

(9)	​ ​(1 − δ)​​π​M​​ + δ​[β ​( ​p​ M​​)​​π​​ ∗​ + ​(1 − β ​( ​p​ M​​)​)​​π​N​​]​  = ​ π​​ ∗​​.

Next, suppose that in all previous periods, both firms have followed the proposed 
strategies and their reports have agreed. If firm ​1​ deviates to ​​p​ 1​​  < ​ p​ M​​​ in the current 
period, it gains

(10)	​ ​Δ​1​​​( ​p​ 1​​)​  = ​ (1 − δ)​​π​1​​​( ​p​ 1​​ , ​p​ M​​)​ + δ​[β ​( ​p​ 1​​)​​π​​ ∗​ + ​(1 − β ​( ​p​ 1​​)​)​​π​N​​]​ − ​π​​ ∗​​,

where ​​π​​ ∗​​ is defined in (9). Thus,

1
2

1

β(p1)

p1
pM

Figure 3. The Probability That Sales Reports Agree after Firm 1 Cuts Its Price and Reports Optimally

Notes: This probability lies strictly between ​​ 1 _ 2 ​​ and 1. It is highest at the monopoly price and decreases with the 
extent of the price cut.
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	​​ Δ​ 1​ ′ ​ ​( ​p​ 1​​)​  = ​ (1 − δ)​ ​ ∂ ​π​1​​ ___ ∂  ​p​ 1​​
 ​ ​( ​p​ 1​​, ​p​ M​​)​ + δ β′ ​( ​p​ 1​​)​ × ​[​π​​ ∗​ − ​π​N​​]​​.

We will show that when ​σ​ is large enough, for all ​​p​ 1​​,​ ​​Δ​ 1​ ′ ​​( ​p​ 1​​)​  >  0.​ Since ​​Δ​1​​​
( ​p​ M​​)​  =  0,​ this will establish that a deviation to a price ​​p​ 1​​  < ​ p​ M​​​ is not profitable. 
Now observe that from Lemma 6,

  ​​   lim​ 
σ→∞

​ 
 
 ​ ​ Δ​ 1​ ′ ​ ( ​p​ 1​​ )  =  (1 − δ) ​ ∂ ​π​1​​ ___ ∂ ​p​ 1​​

 ​ ( ​p​ 1​​, ​p​ M​​) 

	 + δ ​  1 ________________  
π ​√ 

_____________
  1 − ​ρ​ 0​ 2​ γ ​​( ​p​ 1​​ , ​p​ M​​)​​​ 2​ ​
 ​ ​ρ​0​​ ​ 

∂ γ ___ ∂ ​p​ 1​​
 ​ ( ​p​ 1​​ , ​p​ M​​) × [​π​​ ∗​ − ​π​N​​]

	 ≥ ​ (1 − δ)​ ​ ∂ ​π​1​​ ___ ∂ ​p​ 1​​
 ​ ( ​p​ M​​, ​p​ M​​) 

	 + δ ​  1 _______________  
π ​√ 

____________
  1 − ​ρ​ 0​ 2​ γ ​​(0, ​p​ M​​)​​​ 2​ ​
 ​ ​ρ​0​​ ​ 

∂ γ ___ ∂ ​p​ 1​​
 ​ (0, ​p​ M​​ ) × [​π​​ ∗​ − ​π​N​​]​,

where the last inequality uses the fact that since ​​π​1​​​ is concave in ​​p​ 1​​,​ ​​ 
∂ ​π​1​​ _ ∂ ​p​ 1​​

 ​ ​( ​p​ 1​​ , ​p​ M​​)​  
> ​  ∂ ​π​1​​ _ ∂ ​p​ 1​​

 ​ ​( ​p​ M​​ , ​p​ M​​)​​, and the fact that ​γ ​( ​p​ 1​​ , ​p​ M​​)​​ is increasing and convex in ​​p​ 1​​ .​ Let ​σ​
(δ)​​ be such that for all ​σ  >  σ​(δ)​,​ the inequality above holds.

Let ​​δ _​​ be the solution to

(11) ​ ​(1 − δ)​ ​ ∂ ​π​1​​ ___ ∂ ​p​ 1​​
 ​ ​( ​p​ M​​, ​p​ M​​)​ + δ ​  1 _____________  

π ​√ 
_

  1 − γ ​​(0, ​p​ M​​)​​​ 2​ ​
 ​ ​ ∂ γ ___ ∂ ​p​ 1​​

 ​ ​(0, ​p​ M​​)​ × ​[​π​​ ∗​ − ​π​N​​]​  =  0​,

which is just the right-hand side of the inequality above when ​​ρ​0​​  =  1​. Such a ​​δ _​​ 
exists since ​​ ∂ ​π​1​​ _ ∂ ​p​ 1​​

 ​ ​( ​p​ M​​, ​p​ M​​)​​ is finite and, by assumption, ​​ ∂ ρ _ ∂ ​p​ 1​​
 ​ ​(0, ​p​ M​​)​​ is strictly positive. 

Notice that for any ​δ  > ​ δ _​,​ the expression on the left-hand side is strictly positive.
Now observe that

	​​   1 _______________  
π ​√ 

____________
  1 − ​ρ​ 0​ 2​ γ ​​(1, ​p​ M​​)​​​ 2​ ​
 ​ ​ρ​0​​ ​ 

∂ γ ___ ∂ ​p​ 1​​
 ​ ​(0, ​p​ M​​)​ × ​[​π​​ ∗​ − ​π​N​​]​​

is increasing and continuous in ​​ρ​0​​ ​(recall that ​​π​​ ∗​​ is increasing in ​​ρ​0​​​). Thus, given any ​
δ  > ​ δ _​,​ there exists a ​​ρ​0​​​(δ)​​ such that for ​​ρ​0​​  = ​ ρ​0​​​(δ)​​:

​​(1 − δ)​ ​ ∂ ​π​1​​ ___ ∂ ​p​ 1​​
 ​ ​( ​p​ M​​, ​p​ M​​)​ + δ ​  1 _______________  

π ​√ 
____________

  1 − ​ρ​ 0​ 2​ γ ​​(0, ​p​ M​​)​​​ 2​ ​
 ​ ​ρ​0​​ ​ 

∂ γ ___ ∂ ​p​ 1​​
 ​ ​(0, ​p​ M​​)​ × ​[​π​​ ∗​ − ​π​N​​]​ = 0.​

Note that ​​ρ​0​​​(δ)​​ is a decreasing function of ​δ​ and for any ​​ρ​0​​  > ​ ρ​0​​​(δ)​,​ the left-hand 
side is strictly positive.

A deviation by firm ​1​ to a price ​​p​ 1​​  > ​ p​ M​​​ is clearly unprofitable. ∎



303AWAYA AND KRISHNA: ON COMMUNICATION AND COLLUSIONVOL. 106 NO. 2

Aoyagi (2002) was the first to use threshold reporting strategies in a correlated 
environment. He shows that for a given monitoring structure (​​ρ​0​​​ and ​σ​ fixed) as the 
discount factor ​δ​ goes to one, such strategies constitute an equilibrium. The idea—
as in all “folk theorems”—is that even when the probability of detection is low, if 
players are patient enough, future punishments are a sufficient deterrent. In contrast, 
Proposition 2 shows that for a given discount factor (​δ​ high but fixed), as ​​ρ​0​​​ goes to 
one and ​σ​ goes to infinity, there is an equilibrium with high profits. Its logic, how-
ever, is different from that underlying the “folk theorems” with communication, as 
for instance, in the work of Compte (1998) and Kandori and Matsushima (1998). 
In these papers, signals are conditionally independent and, in equilibrium, players 
are indifferent among the messages they send. Kandori and Matsushima (1998) also 
show that with correlation, strict incentives for “truth-telling” can be provided as 
is also true in our construction. But the key difference between our work and these 
papers is that in Proposition 2 the punishment power derives not from the patience 
of the players; rather it comes from the noisiness of the monitoring. A deviating firm 
finds it very difficult to predict its rival’s sales and hence, even it “lies” optimally, a 
deviation is very likely to trigger a punishment.

The equilibrium constructed in Proposition 2 relies on using the correlation of 
signals to “check” firms’ reports. This is reminiscent of the logic underlying the 
full-surplus extraction results of Crémer and McLean (1988) but, of course, in our 
setting there is no mechanism designer who can commit to arbitrarily large punish-
ments to induce truth-telling.

In our model, firms communicate simultaneously—neither firm knows the other’s 
report prior to its own—and this feature is crucial to the equilibrium construction. It 
is the uncertainty about what the other firm will say that disciplines firms’ behavior. 
Often trade associations help cartels exchange sales data in a manner that is mim-
icked by the simultaneous reporting in our equilibrium. Cartel members make con-
fidential sales reports to the association which, as mentioned above, disseminates 
aggregate sales data to the cartel. Individual sales figures are not shared.16 Their 
confidentiality is usually preserved by third parties. The pocket calculator ploy men-
tioned in the introduction also serves the same purpose.

Finally, the “grim trigger” strategies specified above are unforgiving in that a 
single disagreement at the communication stage triggers a permanent reversion to 
the one-shot Nash equilibrium. Since disagreement occurs with positive probabil-
ity even if neither firm cheats, this means that in the long-run, collusion inevitably 
breaks down. Real-world cartels do punish transgressors but these punishments are 
not permanent. The equilibrium strategies we have used can easily be amended so 
that the punishment phase is not permanent and that, after a prespecified number of 
periods, say ​T​ , firms return to monopoly pricing. Specifically, this means that the 
equilibrium profits ​​π​​ ∗∗​​ are now defined by

	​ ​(1 − δ)​ ​π​M​​ + δ​[β ​( ​p​ M​​)​ ​π​​ ∗∗​ + ​(1 − β ​( ​p​ M​​)​)​ ​(​(1 − ​δ​​ T+1​)​ ​π​N​​ + ​δ​​ T+1​ ​π​​ ∗∗​)​]​  = ​ π​​ ∗∗​​

16 The sharing of aggregate data is not illegal (see the discussion of the Maple Flooring case in Areeda and 
Kaplow 1988). 
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instead of (9). For any ​δ  > ​ δ _​​ (as defined by (11)), there exists a ​T​ large enough so 
that the forgiving strategy constitutes an equilibrium as well. Note that ​​π​​ ∗∗​  > ​ π​​ ∗​.​

IV.  Gains from Communication

Proposition 1 shows that the profits from any equilibrium without communica-
tion cannot exceed

	​ 2 ​π​M​​ − ​Ψ​​ −1​​(4​_ π ​η ​  ​δ​​ 2​ ____ 
1 − δ ​)​​,

whereas Proposition 2 provides conditions under which there is an equilibrium 
with communication with profits ​2 ​π​​ ∗​​ (as defined in (9)). From (8) it follows that 
as ​​ρ​0​​  →  1,​ ​β ​( ​p​ M​​)​  →  1.​ Now from (9) it follows that as ​​ρ​0​​  →  1,​ ​​π​​ ∗​  → ​ π​M​​ .​ 
Combining these facts leads to the formal version of the result stated in the intro-
duction. Let ​​δ _​​ be determined as in (11).

Theorem 1: For any ​δ  > ​ δ _​,​ there exist ​​(σ(δ), ​ρ​0​​ (δ))​​ such that for all ​​(σ, ​ρ​0​​)​  
≫ ​ (σ(δ), ​ρ​0​​ (δ))​​ there is an equilibrium with communication with total profits ​2 ​π​​ ∗​​ 
such that

	​ 2 ​π​​ ∗​  >  2 ​π​M​​ − ​Ψ​​ −1​​(4​_ π ​η ​  ​δ​​ 2​ ____ 
1 − δ ​)​​.

In the limit, as ​​ρ​0​​  →  1​ and ​σ  →  ∞,​ the left-hand side of the inequality goes to ​
2 ​π​M​​​ and the right-hand side goes ​2 ​π​M​​ − ​Ψ​​ −1​​(0)​​ since ​η  →  0.​ Thus, the difference 
in profits between the two regimes is at least ​​Ψ​​ −1​​(0)​  >  0.​

The workings of the main result can be seen in Figure 4, which is drawn for the 
case of linear demand (see the next section for details). First, notice that the profits 
with communication depend on ​​ρ​0​​​ and not on ​σ​ (but ​σ​ has to be sufficiently high to 
guarantee that the suggested strategies form an equilibrium). The bound on profits 
without communication, on the other hand, depends on ​σ​ and not on ​​ρ​0​​ .​ For small 
values of ​σ,​ the bound is ineffective and says only that these do not exceed joint 
monopoly profits. As ​σ​ increases, the bound becomes tighter but at intermediate lev-
els the profits from the equilibrium with communication do not exceed the bound. 
Once ​σ  >  σ​(δ)​,​ communication strictly increases profits.

A. Example with Linear Demand

We now illustrate the workings of our results when (expected) demand is linear.
Suppose that17

	​ ​Q  ​i​​ ​( ​p​ i​​ , ​p​ j​​)​  =  max​ ​(A − b ​p​ i​​ + ​p​ j​​ , 1)​​,

17 This specification of “linear” demand is used because ​ln 0​ is not defined. 
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where ​A  >  0​ and ​b  >  1.​ For this specification, the monopoly price ​​p​ M​​  
=  A/2​(b − 1)​​ and monopoly profits ​​π​M​​  = ​ A​​ 2​/4​(b − 1)​.​ There is a unique 
Nash equilibrium of the one-shot game with prices ​​p​ N​​  =  A/​(2b − 1)​​ and prof-
its ​​π​N​​  = ​ A​​ 2​ b/​​(2b − 1)​​​ 2​ .​ A firm’s best response if the other firm charges 
the monopoly price ​​p​ M​​​ is to charge ​​ _ p ​  =  A​(2b − 1)​/4b​(b − 1)​.​ The high-
est possible profit that firm ​1​ can achieve when charging a price of ​​ _ p ​​ is  
​​_ π ​  = ​ π​1​​​( ​ 

_ p ​, ​p​ M​​)​  = ​ A​​ 2​ ​​(2b − 1)​​​ 2​ /16b ​​(b − 1)​​​ 2​ .​
It remains to specify how the correlation between the firms’ log sales is affected 

by prices. In this example we adopt the following specification:

	​ ρ  = ​   ​ρ​0​​ _  
1 + ​|​p​ 1​​ − ​p​ 2​​|​

 ​​,

which, of course, satisfies the assumption made in Section I.
Then, recalling (1), it may be verified that for ​ε  ∈ ​ [0, ​π​M​​/2 ​b​​ 2​]​​,

	​ Ψ​(ε)​  =  ε + ​  A ________ 
8b ​​(b − 1)​​​ 2​

 ​ ​(A − 2 ​√ 
_

 2​(b − 1)​ ​​(2b − 1)​ ​√ _ ε ​)​​,

which is achieved at equal prices. Note that ​Ψ​(0)​  = ​ π​M​​/2b​(b − 1)​​ and  
​​Ψ​​ −1​​(0)​  = ​ π​M​​/2 ​b​​ 2​ .​

Finally, from (2)

	​ η  =  2Φ​(​ Δ ​μ​max​​ _____ 
2σ ​ )​ − 1​,

No communication

Communication

2π
M

2π
M 
−Ψ−1(0)

ρ
0

2π*

σ(δ) σ

Figure 4. The Main Result

Notes: The no-communication bound decreases with ​σ​ , the standard deviation of log sales, but is independent of ​​​ρ​0​​​​ , 
their correlation. The profits from the constructed equilibrium with communication are, on the other hand, inde-
pendent of ​σ​ , but increase with ​​​ρ​0​​​​. Thus, for large σ​ and ​​​ρ​0​​​​ , the profits with communication exceed those from any 
equilibrium without.
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where ​Δ ​μ​max​​  =  ln ​Q​ 2​​​(0, ​p​ M​​)​ − ln ​Q​ 2​​​(​p​ M​​ , 0)​.​
As a numerical example, suppose ​A  =  120​ and ​b  =  2.​ Let ​δ  =  0.7​ and  

​​ρ​0​​  =  0.95.​ For these parameters, ​​π​M​​  =  3,600,​ ​​_ π ​  =  4,050​, and ​Δ ​μ​max​​  =  5.19.​ 
Also, the profits from the equilibrium with communication, ​​π​​ ∗​  =  3,524​ 
(approximately).

Figure 4 depicts the bound on profits without communication as a function of ​
σ​ using Proposition 1. For low values of ​σ​ (approximately ​σ  =  60​ or lower), the 
bound is ineffective—it equals ​2 ​π​M​​​ —and as ​σ  →  ∞,​ converges to ​2​π​M​​ − ​Ψ​​ −1​​(0)​​.  
As shown, the profits with communication exceed the bound when ​σ  >  σ​(δ)​  =  200​ 
(approximately).

Figure 5 verifies that the strategies ​​(​s​​ ∗​, ​r​​ ∗​)​​ constitute an equilibrium—a devi-
ation to any ​​p​ 1​​  < ​ p​ M​​​ is unprofitable as ​Δ​( ​p​ 1​​)​  <  0​ (as defined in (10)). This is 
verified for ​σ  =  60​ and, of course, the same strategies remain an equilibrium when ​
σ​ is higher.

B. On the Necessity of Communication

Theorem 1 identifies circumstances in which communication is necessary for 
collusion in a private monitoring setting. That it is sufficient has been pointed out in 
many studies, beginning with Compte (1998) and Kandori and Matsushima (1998) 
and then continuing with Fudenberg and Levine (2007), Zheng (2008), and Obara 
(2009). Of particular interest is the work of Aoyagi (2002) and Harrington and 
Skrzypacz (2011) in oligopoly settings. Under various assumptions, all of these 
conclude that the folk theorem holds—any individually rational and feasible out-
come can be approximated as the discount factor tends to one. But as Kandori and 
Matsushima (1998, p. 648, their italics) recognize, “One thing which we did not 
show is the necessity of communication for a folk theorem.” 

Indeed when players are arbitrarily patient, communication is not necessary for 
collusion, as a remarkable paper by Sugaya (2013) shows. He establishes the sur-
prising result that in very general environments, the folk theorem holds without any 
communication. An important component of Sugaya’s proof is that players implic-
itly communicate via their actions. Thus, he shows that with enough time, there is 
no need for direct communication.

In a recent paper, Rahman (2014) shows how communication can overcome 
the “no collusion” result of Sannikov and Skrzypacz (2007) in a repeated Cournot 
oligopoly with public monitoring. But since the latter result concerns only equilibria 
in public strategies, this again does not establish the necessity of communication for 
collusion, only its sufficiency. Moreover, the communication considered by Rahman 
(2014) is either mediated or verifiable. In our work, as well as in the papers men-
tioned above, communication is unmediated and unverifiable.

The restriction to public strategies is also a feature of the analysis of Athey and 
Bagwell (2001) in their model of collusion with incomplete information about costs. 
Communication is used to sustain collusion, but as shown by Hörner and Jamison 
(2007), once the restriction to public strategies is removed, communication is no 
longer necessary for collusion.

Escobar and Toikka (2013) generalize the Athey-Bagwell model to study 
general repeated games with incomplete, possibly persistent, information with 
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communication. They show that with low discounting, efficient outcomes can be 
approximated. On the other hand, Escobar and Llanes (2015) derive conditions 
under which efficiency cannot be attained without communication. The two results 
then isolate circumstances in which, for low discounting, communication is neces-
sary to achieve efficiency.

In a different vein, Awaya (2014a) studies the prisoners’ dilemma with private 
monitoring and shows that for a fixed discount rate, there exist environments in 
which without communication, the only equilibrium is the one-shot equilibrium 
whereas with communication, almost perfect cooperation can be sustained. This 
paper is a precursor to the current one.

Finally, the necessity of communication has been studied in laboratory experi-
ments as well (by Fonseca and Normann 2012 and Cooper and Kühn 2014 among 
others). These experiments, however, do not involve imperfect monitoring and so do 
not directly address the issues dealt with in this paper.

V.  Conclusion

We have provided theoretical support for the idea that even unverifiable commu-
nication within a cartel facilitates greater collusion and is detrimental for society. 
How does “cheap talk” aid collusion? When the monitoring is poor, and there is no 
communication, a price cut cannot be detected with any confidence and this is the 
basis of the bound developed in Proposition 1. With communication, however, the 
probability that a price cut will trigger a punishment is significant relative to the 
short-term gains. Thus, communication reduces the type II error associated with 
imperfect monitoring and this is the driving force behind our main result.

It has been argued (Carlton, Gertner, and Rosenfeld 1996) that the exchange of 
information among firms is beneficial to society because it improves the allocation 
of resources. Consider a firm that experiences high sales. If it learns, in addition, that 
other firms have also experienced high sales, then it would rightly infer that its own 
high sales are the result of a market-wide positive demand shock. If this is likely 
to persist in the future, a firm can then increase production and investment with 

0
pMp

 � (  p1)

Figure 5. The Net Gains from Deviating from the Prescribed Strategies with Communication

Notes: Small price cuts are not that profitable but are hard to detect. Bigger price cuts are more profitable but easier 
to detect. This trade-off accounts for the nonmonotonicity of net gains.
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greater confidence. In this paper, however, demand shocks are independent across 
periods. Last period’s sales thus carry information about the rival’s past behavior but 
reveal nothing about future demand. Thus, any positive effect resulting from infor-
mation exchange is absent. A model in which demand shocks are persistent would 
incorporate both effects and, perhaps, be able to measure the trade-off. This remains 
a project for future research.

We emphasize that, in this paper, we have not explored the role of commu-
nication in coordinating cartel behavior: agreeing on prices, market shares, and 
transfers, among other things. Since cartels cannot sign binding contracts enforced 
by third parties, presumably they can only coordinate on strategies that form an 
equilibrium. Pre-play communication would then serve to select one among many 
equilibria (see Green, Marshall, and Marx 2014). But a theory of how communi-
cation helps firms select among equilibria, while important for antitrust practice, 
remains a challenge.

Appendix

A. Collusion without Communication

Nonresponsive Strategies.—The ex ante distribution over ​​​j​​​ in period ​t​ induced 
by a strategy profile ​s​ is

(A1)	​ ​α​ j​ t​ (s)  = ​ E ​s​​ ​[​s​ j​ t​ ​(​h​ j​ t−1​)​]​  ∈  Δ​(​​j​​)​ ​.

Given a strategy profile ​s,​ recall that ​​α​j​​​ denotes the strategy of firm ​i​ in which it 
plays ​​α​ j​ t​​(s)​​ in period ​t​ following any ​t − 1​ period history. The strategy ​​α​j​​​ replicates 
the ex ante distribution of prices resulting from ​s​ but is nonresponsive to histories.

The following lemma shows that the function ​Ψ​ , defined in (1), which determines 
the incentives versus efficiency trade-off in the one-shot game, embodies the same 
trade-off in a repeated setting if the nondeviating player follows a nonresponsive 
strategy. It shows that to minimize the average incentive to deviate while achieving 
average profits within ​ε​ of ​2 ​π​M​​​ one should split the incentive evenly across periods. 
The lemma resembles an intertemporal “consumption smoothing” argument (recall 
that ​Ψ​ is convex).

Lemma 1 (Smoothing): For any strategy profile ​s​ whose profits exceed ​2 ​π​M​​ − ε,​

	​​ ∑ 
i
​ 
 
 ​​​ [​π​i​​ ​(​​ 

_ s ​​ i​​ , ​α​j​​ ​(s)​)​ − ​π​i​​ ​(s)​]​  ≥  Ψ​(ε)​​,

where ​​​ _ s ​​ i​​​ denotes firm ​i​ ’s strategy in which it sets ​​ _ p ​​ following any history.

Proof: 
Define

	​ ε​(t)​  =  2 ​π​M​​ − ​E ​s​​​[​∑ 
i
​ 
 
 ​​ ​ π​i​​ ​(​s​​ t​ ​(​h​​ t−1​)​)​]​​
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as the difference between the sum of monopoly profits ​2 ​π​M​​​ and the sum of expected 
profits in period ​t.​ Now clearly ​​(1 − δ)​ ​∑ t=1​ ∞ ​​ ​δ​​ t​ ε​(t)​  ≤  ε.​

Then,

​	​ ∑ 
i
​ 
 
 ​​​ [​π​i​​​(​​ 

_ s ​​ i​​ , ​α​j​​​(s)​)​ − ​π​i​​ ​(s)​]​  = ​ E ​s​​​[​(1 − δ)​ ​ ∑ 
t=1

​ 
∞

 ​​ ​δ​​ t​ ​∑ 
i
​ 
 
 ​​​ [​π​i​​ ​(​ _ p ​, ​p​ j​ t​)​ − ​π​i​​ ​(​p​ i​ t​ , ​p​ j​ t​)​]​]​

	 ≥ ​ (1 − δ)​ ​ ∑ 
t=1

​ 
∞

 ​​ ​δ​​ t​ Ψ ​(ε ​(t)​)​

	 ≥  Ψ​(​(1 − δ)​ ​ ∑ 
t=1

​ 
∞

 ​​ ​δ​​ t​ ε ​(t)​)​

	 ≥  Ψ ​(ε)​​.

The first equality follows from the fact that the induced distribution over prices ​​p​ j​ t​​ 
is the same under ​(​​ _ s ​​ i​​ , ​α​j​​ )​ as it is under ​s.​ The second inequality follows from the 
definition of ​Ψ​. The third and fourth result from the fact that ​Ψ​ is convex and non-
increasing, respectively. ∎

Weak Monitoring.—For a fixed strategy pair ​(​s​ 1​​ , ​s​ 2​​ )​ , let ​​λ​ j​ t​​ be the induced prob-
ability distribution over firm ​j​ ’s private histories ​​h​ j​ t​  ∈ ​ ​ j​ t​  = ​ (​​j​​ × ​​j​​ )​​ t​  ⊂ ​ 핉​​ 2t​​. 
Similarly, let ​​​

_
 λ ​​ j​ t​​ be the probability distribution over ​j​ ’s private histories induced 

by the strategy pair ​(​​ _ s ​​ i​​ , ​s​ j​​ ).​18 We wish to determine the total variation distance 
between ​​λ​ j​ t​​ and ​​​

_
 λ ​​ j​ t​​.

The total variation distance between two distributions ​G​ and ​​ 
_
 G ​​ over ​​핉​​ n​​ is equal to

(A2)	​ ​​‖G − ​ 
_
 G ​‖​​TV​​  = ​  1 _ 

2
 ​ ​  sup​ 
​​‖φ‖​​∞​​ ≤1

​ ​ ​ ​ |E​[φ]​ − ​ 
_
 E ​​[φ]​|​ ​,

where ​E​ and ​​ 
_
 E ​​ denote the expectations with respect to the distributions ​G​ and ​​ 

_
 G ​,​  

respectively, and the supremum is taken over all measurable functions ​φ​ with 
sup norm ​​​‖φ‖​​∞​​  ≤  1​. Note that the definition in (A2) is equivalent to the one in 
Definition 1. See, for instance, Levin, Peres, and Wilmer (2009).

As a first step, we decompose the total variation distance between two probabil-
ity distributions into the distance between their marginals and that between their 
conditionals.

Lemma 2: Given two distributions ​G​ and ​​ 
_
 G ​​ over ​​핉​​ m​ × ​핉​​ n​ ,​

	​ ​​‖G − ​ 
_
 G ​‖​​TV​​  ≤ ​​ ‖​G​ X​​ − ​​ 

_
 G ​​X​​‖​​TV​​ + ​sup​ 

x
​ ​ ​ ​​ ‖​G​ Y | X​​ − ​​ 

_
 G ​​Y | X​​‖​​

TV
​​​  ,

where ​​G​ X​​​ is the marginal distribution of ​G​ on ​​핉​​ m​​ and ​​G​ Y | X​​​(· | x)​​ is the conditional 

distribution of ​G​ on ​​핉​​ n​​ given ​X  =  x​ (and similarly for ​​ 
_
 G ​​).

18 Recall that ​​​ _ s ​​ i​​​ denotes the strategy of firm ​i​ in which it sets ​​ _ p ​​ with probability one following any history. 
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Proof: 
Let ​E​ and ​​ 

_
 E ​​ denote the expectations with respect to ​G​ and ​​ 

_
 G ​,​ respectively.

Given any function ​φ : ​핉​​ m​ × ​핉​​ n​  → ​ [−1, 1]​,​ we have

  ​​   1 _ 
2
 ​ ​|E​[φ]​ − ​ 

_
 E ​​[φ]​|​  =  ​  1 _ 

2
 ​​|​E​ X​​​[​E​ Y | X​​​[φ]​]​ − ​​ 

_
 E ​​ X​​​[​​ 

_
 E ​​ Y | X​​​[φ]​]​|​

	 ≤ ​  1 _ 
2
 ​ ​|​E​ X​​​[​E​ Y | X​​​[φ]​]​ − ​​ 

_
 E ​​ X​​​[​E​ Y | X​​​[φ]​]​|​

	 + ​ 1 _ 
2
 ​ ​|​​ 
_
 E ​​ X​​​[​E​ Y | X​​​[φ]​]​ − ​​ 

_
 E ​​ X​​​[​​ 

_
 E ​​ Y | X​​​[φ]​]​|​

	 ≤ ​  1 _ 
2
 ​ ​  sup​ 
​​‖φ‖​​∞​​ ≤1

​ ​ ​ ​ |​E​ X​​​[φ]​ − ​​ 
_
 E ​​ X​​​[φ]​|​ + ​ 1 _ 

2
 ​ ​​ 
_
 E ​​ X​​​[​|​E​ Y | X​​​[φ]​ − ​​ 

_
 E ​​ Y | X​​​[φ]​|​]​

	 ≤ ​​ ‖​G ​X​​ − ​​ 
_
 G ​​ X​​‖​​TV​​ + ​​ 

_
 E ​​ X​​​[​​‖​G ​Y | X​​ − ​​ 

_
 G ​​ Y | X​​‖​​

TV
​​]​

	 ≤  ​​ ‖​G ​X​​ − ​​ 
_
 G ​​ X​​‖​​TV​​ + ​sup​ 

x
​ ​ ​ ​​ ‖​G  ​Y | X​​ − ​​ 

_
 G ​​ Y | X​​‖​​

TV
​​​  ,

and so

   ​​​   ‖G − ​ 
_
 G ​‖​​TV​​  =  ​  1 _ 

2
 ​ ​  sup​ 
​​‖φ‖​​∞​​ ≤1

​ ​ ​ ​ |E​[φ]​ − ​ 
_
 E ​​[φ]​|​

  	 ≤ ​​ ‖​G ​X​​ − ​​ 
_
 G ​​ X​​‖​​TV​​ + ​sup​ 

x
​ ​ ​ ​​ ‖​G  ​Y | X​​ − ​​ 

_
 G ​​ Y | X​​‖​​

TV
​​​  ,

which is the required inequality. ∎

Next we show that given a history ​​h​ j​ t−1​ ,​ the total variation distance between the 
two conditional distributions cannot exceed the monitoring quality.

Lemma 3: For any ​​h​ j​ t−1​ ,​

	​​​ ‖​λ​ j​ t​ ​( · | ​h​ j​ t−1​)​ − ​​
_
 λ ​​ j​ t​ ​( · | ​h​ j​ t−1​)​‖​​

TV
​​  ≤  η​.

Proof: 
Let ​​S​ j​​ ​( · | ​h​ j​ t−1​)​​ denote the distribution of prices that ​j​ ’s strat-

egy ​​s​ j​​​ induces after ​j​ ’s private history ​​h​ j​ t−1​.​ Similarly, let ​​S​ i​​ ​( · | ​h​ i​ t−1​)​​ denote the 
distribution of prices that ​i​ ’s strategy induces after ​i​ ’s private history ​​h​ i​ t−1​ .​ Let  
​​​S ̂ ​​i​​ ​( · | ​h​ j​ t−1​)​  =  E​[​S​ i​​ ​( · | ​h​ i​ t−1​)​ | ​h​ j​ t−1​]​​ denote ​j​ ’s expectation about ​i​ ’s dis-
tribution of prices, given ​j​ ’s own history ​​h​ j​ t−1​ .​ Finally, let ​​S ̂ ​​(p | ​h​ j​ t−1​)​  
= ​​ S ̂ ​​i​​ ​( ​p​ i​​ | ​h​ j​ t−1​)​ ​S​ j​​ ​( ​p​ j​​ | ​h​ j​ t−1​)​​ denote the joint distribution of prices that ​j​ expects  
given ​j​ ’s private history ​​h​ j​ t−1​​ (recall that firms’ choices are independent).
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Now, for any ​φ : ​​j​​ × ​​j​​  → ​ [−1, 1]​​

   ​ I(φ)  ≡ ​ |​∫ ​​j​​×​​j​​​ 
 
  ​​ φd ​λ​ j​ t​ ​( · | ​h​ j​ t−1​)​ − ​∫ ​​j​​×​​j​​​ 

 
  ​​ φd ​​

_
 λ ​​ j​ t​ ​( · | ​h​ j​ t−1​)​|​

	 = ​ |​∫ ​​i​​
​ 

 
 ​​ ​∫ ​​j​​​ 

 
 ​​ ​∫ ​​j​​​ 

 
 ​​ φd ​F​ j​​ (​y​ j​​ | p) d ​S​ j​​ ​( ​p​ j​​ | ​h​ j​ t−1​)​ d ​​S ̂ ​​i​​ ​( ​p​ i​​ | ​h​ j​ t−1​)​

	 − ​∫ ​​j​​​ 
 
 ​​ ​∫ ​​j​​​ 

 
 ​​ φd ​F​ j​​ ​(​y​ j​​ | ​ 

_
 p ​, ​p​ j​​)​ d ​S​ j​​ ​( ​p​ j​​ | ​h​ j​ t−1​)​|​

=  ​|​∫ ​ 
 
 ​​ ​∫ ​​j​​​ 

 
 ​​ φd ​F​ j​​ ​(​y​ j​​ | p)​ d ​S ̂ ​ ​(p | ​h​ j​ t−1​)​ − ​∫ ​ 

 
 ​​ ​∫ ​​j​​​ 

 
 ​​ φd ​F​ j​​ ​(​y​ j​​ | ​ 

_
 p ​, ​p​ j​​)​ d ​S ̂ ​ ​(p | ​h​ j​ t−1​)​|​,​

where ​  ≡ ​ ​1​​ × ​​2​​​ and the second equality follows by integrating

	​​ ∫ ​​j​​​ 
 
 ​​ ​∫ ​​j​​​ 

 
 ​​ ϕ d ​F​ j​​ ​(​y​ j​​ | ​ _ p ​, ​p​ j​​)​ d ​S​ j​​ ​(​p​ j​​ | ​h​ j​ t−1​)​​

over ​​​i​​​ using the distribution ​​​S ̂ ​​i​​ ​( · | ​h​ j​ t−1​)​.​ Thus,

   ​   I (φ)  = ​ |​∫ ​ 
 
 ​​ ​∫ ​​j​​​ 

 
 ​​ φ​[ ​f​ j​​ ​(​y​ j​​ | p)​ − ​f​ j​​ ​(​y​ j​​ | ​ 

_
 p ​, ​p​ j​​)​]​ d ​y​ j​​ d ​S ̂ ​ ​(p | ​h​ j​ t−1​)​|​

	 ≤ ​ ∫ ​ 
 
 ​​ ​[​∫ ​​j​​​ 

 
 ​​ ​|φ ​f​ j​​ ​(​y​ j​​ | p)​ − φ ​f​ j​​ ​(​y​ j​​ | ​ _ p ​, ​p​ j​​)​ |​ d ​y​ j​​]​ d ​S ̂ ​ ​(p | ​h​ j​ t−1​)​

	 ≤  2 ​∫ ​ 
 
 ​​ η d ​S ̂ ​​(p | ​h​ j​ t−1​)​

	 =  2η​,

where the second inequality follows from the definition of total variation.
Thus,

   ​​​   ‖​λ​ j​ t​ ​( · | ​h​ j​ t−1​)​ − ​​
_
 λ ​​ j​ t​ ​( · | ​h​ j​ t−1​)​‖​​

TV
​​  =  ​  1 _ 

2
 ​  ​  sup​ 
​​‖φ‖​​∞​​ ≤1

​ ​ ​  I (φ)

	 ≤  η​  ,

as was to be shown. ∎

Combining the preceding two lemmas we obtain the key result that the total vari-
ation distance between ​​λ​ j​ t​​ and ​​​

_
 λ ​​ j​ t​​ is bounded above by a linear function of time.
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Lemma 4: For all ​t​ ,

	​ ​​‖​λ​ j​ t​ − ​​
_
 λ ​​ j​ t​‖​​

TV
​​  ≤  t η​ .

Proof: 
The proof is by induction. For ​t  =  1,​ there is no history and Lemma 3 implies 

the result directly.
Now suppose that the result holds for ​t − 1.​ Using Lemma 2, we have

	​​​ ‖​λ​ j​ t​ − ​​
_
 λ ​​ j​ t​‖​​

TV
​​  ≤  ​​ ‖​λ​ j​ t−1​ − ​​

_
 λ ​​ j​ t−1​‖​​

TV
​​ + ​ sup​ 

​h​ j​ 
t−1​

​ ​
  ​ ​​‖​λ​ j​ t​ ​( · | ​h​ j​ t−1​)​ − ​​

_
 λ ​​ j​ t​ ​( · | ​h​ j​ t−1​)​‖​​

TV
​​

	 ≤ ​ (t − 1)​ η + η​

by the induction hypothesis and Lemma 3. ∎

The next result verifies the intuition that when the monitoring quality is low, the 
profits of a deviator who undertakes a permanent price cut are not too different from 
those when its rival follows a distributionally equivalent nonresponsive strategy. The 
importance of the lemma is in quantifying this difference.

Lemma 5: Let ​α​ be the nonresponsive strategy as defined in (A1). Then,

	​​ |​π​i​​ ​(​​ _ s ​​ i​​ , ​s​ j​​)​ − ​π​i​​​(​​ _ s ​​ i​​ , ​α​j​​)​|​  ≤  2 ​_ π ​ η ​  ​δ​​ 2​ _ 
1 − δ ​​  ,

where ​​
_ π ​  =  ma​x​​p​j​​​​ ​π​i​​​(​ _ p ​, ​p​ j​​)​.​

Proof: 
As above, let ​​λ​ j​ t​​ be the distribution over firm ​j​ ’s private histories ​​h​ j​ t​​ induced by ​​

(​s​ i​​ , ​s​ j​​)​​ and let ​​​
_
 λ ​​ j​ t​​ be the distribution over ​j​ ’s private histories induced by ​​(​​ _ s ​​ i​​ , ​s​ j​​)​.​ 

Then,

	​ ​π​i​​ ​(​​ _ s ​​ i​​ , ​s​ j​​)​  = ​ (1 − δ)​ ​ ∑ 
t=1

​ 
∞

 ​​ ​δ​​ t​ ​∫ ​​ j​ 
t−1​​ 

 
  ​​ E ​[​π​i​​ ​( ​ _ p ​, ​s​ j​​)​ | ​h​ j​ t−1​]​ d ​​

_
 λ ​​j​​ ​(​h​ j​ t−1​)​​.

Also, if ​​S​ j​​ ​( · | ​h​ j​ t−1​)​​ denotes the distribution over ​j​ ’s prices induced by the strategy ​​s​ j​​​ 
following the history ​​h​ j​ t−1​,​ then

   ​​   π​i​​​(​​ _ s ​​ i​​ , ​α​j​​)​  = ​ (1 − δ)​ ​ ∑ 
t=1

​ 
∞

 ​​ ​δ​​ t​ ​∫ ​​j​​​ 
 
 ​​ ​π​i​​ ​(​ _ p ​, ​p​ j​​)​ d ​α​ j​ t​ ​(​p​ j​​)​

	 =  ​(1 − δ)​ ​ ∑ 
t=1

​ 
∞

 ​​ ​δ​​ t​ ​∫ ​​j​​​ 
 
 ​​ ​π​i​​ ​(​ _ p ​, ​p​ j​​)​​(​∫ ​​ j​ 

t−1​​ 
 
  ​​ d ​S​ j​​ ​(​p​ j​​ | ​h​ j​ t−1​)​ d ​λ​j​​ ​(​h​ j​ t−1​)​)​

	 =  ​(1 − δ)​ ​ ∑ 
t=1

​ 
∞

 ​​ ​δ​​ t​ ​∫ ​​ j​ 
t−1​​ 

 
  ​​ E ​[​π​i​​ ​(​ _ p ​, ​s​ j​​)​ | ​h​ j​ t−1​]​ d ​λ​j​​ ​(​h​ j​ t−1​)​​
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since by definition

	​ ​α​ j​ t​ ​(​p​ j​​)​  = ​ ∫ ​​ j​ 
t−1​​ 

 
  ​​ ​S​ j​​ ​(​p​ j​​ | ​h​ j​ t−1​)​ d ​λ​j​​ ​(​h​ j​ t−1​)​​.

Thus,

  ​​  |​π​i​​ ​(​​ _ s ​​ i​​ , ​s​ j​​)​ − ​π​i​​ ​(​​ _ s ​​ i​​ , ​α​j​​)​|​

        ≤ ​ (1 − δ)​ ​ ∑ 
t=1

​ 
∞

 ​​ ​δ​​ t​ ​| ​∫ ​​ j​ 
t−1​​ 

 
 ​​  E ​[​π​i​​ ​( ​ _ p ​, ​s​ j​​)​ | ​h​ j​ t−1​]​​(d ​​

_
 λ ​​j​​ ​(​h​ j​ t−1​)​ − d ​λ​j​​ ​(​h​ j​ t−1​)​)​|​

        ≤  2 ​_ π ​ η ​(1 − δ)​ ​ ∑ 
t=1

​ 
∞

 ​​ ​δ​​ t​ ​(t − 1)​

        =  2 ​_ π ​ η ​  ​δ​​ 2​ _ 
1 − δ ​​  ,

where the second inequality is a consequence of Lemma 4 and the fact that, as in 
(A2), given any two distributions ​λ​ and ​​

_
 λ ​,​ ​​|E​[φ]​ − ​ 

_
 E ​​[φ]​|​  ≤  2 ​​‖φ‖​​∞​​ × ​​‖λ − ​

_
 λ ​‖​​TV​​​ 

for any bounded measurable function ​φ​. ∎

B. Collusion with Communication

Lemma 6: For any ​​p​ 1​​  ≥  1,​

	​​   lim​ 
σ→∞

​ 
 
  ​ β  ′ ​(​p​ 1​​)​  = ​   1 _________________  

π ​√ 
_____________

  1 − ​ρ​ 0​ 2​ γ ​​(​p​ 1​​ , ​p​ M​​)​​​ 2​ ​
 ​ × ​ρ​0​​ ​ 

∂ γ ___ ∂ ​p​ 1​​
 ​ ​( ​p​ 1​​ , ​p​ M​​)​​.

Proof: 
First, we derive ​β  ′ ​( ​p​ 1​​)​.​ Since ​λ​ is optimally chosen, the envelope theorem guar-

antees that

	​​ 
∂ β ​( ​p​ 1​​)​ ______ ∂ λ ​   =  0​,

and so

	​ ​ 
∂ β ​( ​p​ 1​​)​ _ ∂ ​μ​1​​

 ​   =  −  ​ 
∂ β ​( ​p​ 1​​)​ _ ∂ λ ​   =  0​

as well.
Thus, we have

	​ β  ′ ​( ​p​ 1​​)​  = ​ 
∂ β ​( ​p​ 1​​)​ _ ∂ ρ ​ ​  ∂ ρ _ ∂  ​p​ 1​​

 ​ + ​ 
∂ β ​( ​p​ 1​​)​ _ ∂ ​μ​2​​

 ​ ​  ∂ ​μ​2​​ _ ∂  ​p​ 1​​
 ​​ .
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Now, since we can, write

​β ​( ​p​ 1​​)​ = 2 ​
_

 Φ ​ ​(​ 
λ​( ​p​ 1​​)​ − ​μ​1​​ ________ σ ​  , ​ ​μ​M​​ − ​μ​2​​ ______ σ ​  ; ρ)​ + Φ ​(​ 

λ​( ​p​ 1​​)​ − ​μ​1​​ ________ σ ​ )​ + Φ​(​ ​μ​M​​ − ​μ​2​​ ______ σ ​ )​ − 1,​

where

	​ ​
_

 Φ ​ ​(​z​ 1​​ , ​z​ 2​​ ; ρ)​  =  Pr​ ​[​Z ​ 1​​  ≥ ​ z​ 1​​ , ​Z ​ 2​​  ≥ ​ z​ 2​​]​  = ​ ∫ 
−1

​ 
ρ
 ​​ ϕ ​(​z​ 1​​ , ​z​ 2​​ ; θ)​ d θ​

using Sheppard’s formula19 (see Tihansky 1972), and ​Φ​ is the cumulative distribu-
tion function of a standard univariate normal. Thus,

	​ ​ 
∂ β ​( ​p​ 1​​)​ _ ∂ ρ ​   =  2ϕ ​(​ 

λ​( ​p​ 1​​)​ − ​μ​1​​ ________ σ ​  , ​ ​μ​M​​ − ​μ​2​​ ______ σ ​  ; ρ)​​,

which converges to ​2ϕ ​(0, 0; ρ)​  =  1/π ​√ 
_

 1 − ​ρ​​ 2​ ​​ as ​σ  →  ∞.​
Finally,

 ​​ 
∂ β ​(

 
​p​ 1​​)​ _ ∂ ​μ​2​​
 ​   = ​  1 _ σ ​ ​[​∫ 

−∞
​ ​ λ−​μ​1​​ _____ σ ​ ​​ ϕ​(​z​ 1​​ , ​ 

​μ​M​​ − ​μ​2​​ ______ σ ​  ; ρ)​ d ​z​ 1​​ − ​∫ ​ λ−​μ​1​​ _____ σ ​ ​ 
∞

 ​​  ϕ​(​z​ 1​​ , ​ 
​μ​M​​ − ​μ​2​​ ______ σ ​  ; ρ)​ d ​z​ 1​​]​

	 =  ​  1 _ σ ​ ​[2Φ ​(​ 1 − ​ρ​​ 2​ _____ ρ ​ ​  ​μ​M​​ − ​μ​2​​ ______ σ ​ )​ − 1]​ ϕ​(​ ​μ​M​​ − ​μ​2​​ ______ σ ​ )​​.

This converges to ​0​ as ​σ  →  ∞.​ ∎
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